บันทึกสรุปบทเรียนจากการแลกเปลี่ยนเรียนรู้

เรื่อง การประยุกต์ใช้งานระบบภูมิสารสนเทศด้วยโปรแกรม QGIS

กิจกรรมครั้งที่ ในวันที่ 30 กรกฎาคม 2562 และวันที่ 8 สิงหาคม 2562 1 และ 2 ชื่อผู้บันทึก นางสาวศิริวรรณ สันคม นักวิเคราะห์นโยบายและแผนปฏิบัติการ ขอบเขตเนื้อหา การถ่ายทอดความรู้ แลกเปลี่ยนเรียนรู้และประสบการณ์ ฝึกปฏิบัติ และตอบข้อซักถาม เกี่ยวกับ การประยุกต์ใช้งานระบบภูมิสารสนเทศด้วยโปรแกรม QGIS บันทึกสรุปบทเรียน เทคโนโลยีภูมิสารสนเทศขั้นพื้นฐานสำหรับงานด้านสุขภาพสัตว์ basic Geo-information technology for Animal Health พื้นฐานระบบสารสนเทศภูมิศาสตร์ GIS (01) 1. Global Navigation Satellite System : GNSS /GPS (02) 2. การค้นหาและเก็บค่าพิกัดของตำแหน่ง (03) 3.

4. Using google map and Other applications for GIS (04)

5. Basic Using of QGIS : aggregate/individual-level data (05 06 07)

Geo-information technology

เทคโนโลยีภูมิสารสนเทศ (Geo-information/Geo-Informatics/Geomatics technology) หมายถึง การบูรณาการ ความรู้และเทคโนโลยีทางด้านการรับรู้จากระยะไกล(Remote Sensing : RS) ระบบสารสนเทศภูมิศาสตร์ (Geographic Information System : GIS) และระบบดาวเทียมนำทางโลก (Global Navigation Satellite System : GNSS) เพื่อประยุกต์ใช้ งานในด้านต่างๆ ให้เป็นไปอย่างมีประสิทธิภาพ (http://www.gistda.or.th)

1. พื้นฐานระบบสารสนเทศภูมิศาสตร์ GIS

- "GIS" Stands for "Geographic Information Systems"
- GIS tools are used to gather and analyze data about the surface of the earth.
- The data can be used to create charts, maps, and 3D models of the earth's surface. This includes hills, mountains, trees, buildings, streets, rivers, and pretty much anything else.
- "A system for data visualization and analysis"

Framework for Spatial Data Analysis

Basic GIS Knowledge

- 1.1 Datum (ระดับอ้างอิง)
- 1.2 Coordinate system (ระบบพิกัด)
- 1.3 GIS Data Type (ชนิดข้อมูล)
- 1.4 ETC
 - Pre-Requirements
 - \blacktriangleright Other file types used with GIS.
 - > Character encoding
 - Sources of GIS data

1.1 Datum (ระดับอ้างอิง)

ระดับอ้างอิง (Datum) เป็นจุดที่ใช้อ้างอิงเพื่อใช้วัดตำแหน่งบนผื้นผิวโลก ซึ่ง จุดอ้างอิงนี้จะใช้เป็นตำแหน่งเริ่มต้นของเส้นรุ้งเส้นแวง แบ่งเป็น 2 ประเภท

1) อ้างอิงตำแหน่งที่อยู่ใกล้กับพื้นผิวโลก เช่นระบบแบบ 1927 North American Datum (NAD27) ใช้ตำแหน่งเมือง Meadas Ranch ,Kansas เป็นตำแหน่งในการตรวจวัด ทั้งหมด

2) อ้างอิงตำแหน่งกึ่งกลางโลก เช่นระบบแบบ 1983 North American Datum (NAD83) มีตำแหน่งใกล้กึ่งกลางโลกจริงมาก

Datum สำหรับประเทศไทย

อ้างอิงจากหน่วยงานหลักด้านการผลิตแผนที่ คือกรมแผนที่ทหาร

- Indian 1975 อ้างอิงสำหรับแผนที่มูลฐานมาตราส่วน 1:5000 ชุด L7017
- WGS 84 (World Geodesic System 1984) อ้างอิงสำหรับแผนที่มูลฐานมาตราส่วน 1:5000 ชุด L7018

1.2 ระบบพิกัด (Coordinate system)

ระบบพิกัด (coordinate system) เป็นระบบอ้างอิ่งในการกำหนดตำแหน่งในแผนที่ โดยระบบพิกัดที่นิยมใช้ กับแผนที่ในปัจจุบัน มีอยู่ด้วยกัน 2 ระบบ คือ

1.2.1 ระบบพิกัดภูมิศาสตร์ (Geographic coordinate system- GCS)

เป็นระบบที่ใช้พื้นผิวสามมิติของรูปทรงกลมในการกำหนดตำแหน่งบนพื้นผิวโลก- การกำหนดตำแหน่ง ต่างๆบนพื้นโลก ด้วยวิธีการอ้างอิงตำแหน่งค่าพิกัด 2 เส้น คือ เส้นรุ้ง (นอน) หรือค่าละติจูด (latitude) และ เส้นแวง (ตั้ง)หรือค่าลองติจูด (longitude)

ระบบพิกัดภูมิศาสตร์ (Geographic coordinate system- GCS)

Geographic Coordinates

D	ecimal Degrees (DD)	Map reat
	Lat 38.968903°	1
	Lon -76.924766°	
De	ecimal Minutes (DM)	
	Lat N 38° 58.134'	
	Lon W 76° 55.486'	o no
De	egrees Minutes Seconds (DMS)	ot us
	Lat N 38° 58' 8.05"	e
	Lon W 76° 55' 29.16"	

			Degree precision versus length				
decimal places	decimal degrees	DMS	qualitative scale that can be identified	N/S or E/W at equator	E/W at 23N/S	E/W at 45N/S	E/W at 67N/S
0	1.0	1° 00' 0"	country or large region	111.32 km	102.47 km	78.71 km	43.496 km
1	0.1	0° 06' 0"	large city or district	11.132 km	10.247 km	7.871 km	4.3496 km
2	0.01	0° 00′ 36″	town or village	1.1132 km	1.0247 km	787.1 m	434.96 m
3	0.001	0° 00' 3.6"	neighborhood, street	111.32 m	102.47 m	78.71 m	43.496 m
4	0.0001	0º 00' 0 36"	individual street, land parcel	11 132 m	10 247 m	7.871 m	4 3496 m
5	0.00001	0° 00' 0.036"	individual trees, door entrance	1.1132 m	1.0247 m	787.1 mm	434.96 mm
6	0.000001	0° 00' 0.0036"	Individual numans	111.32 mm	102.47 mm	78.71 mm	43.496 mm
7	0.0000001	0° 00' 0.00036"	practical limit of commercial surveying	11.132 mm	10.247 mm	7.871 mm	4.3496 mm
8	0.00000001	0° 00' 0.000036"	specialized surveying (e.g. tectonic plate mapping)	1.1132 mm	1.0247 mm	787.1 µm	434.96 µm

Should be collected in Decimal Degrees form with at least 5 decimal places

1.2.2. ระบบพิกัดกริด (Grid Coordinate OR UTM : Universal Transverse Mercator)

- Universal Transverse Mercator (UTM) coordinate system is a standard set of map projections with a central meridian for each six-degree wide UTM zone.
- The UTM projection flattens the sphere 60 times by shifting the cylinder central meridian(Transverse Mercator projection) 6° for each zone. This gives cartographers a map to work with always in meters.
- The Universal Transverse Mercator is horrible for small-scale (less-detailed) maps like world atlases and perfect for mapping narrow regions
- Data that crosses zones is subject to distortion.

The transverse Mercator map projection

is an adaptation of the standard Mercator projection which flips the cylinder 90 degrees (transverse).

4:26 ก่อนเพี่ยง · 3 ส.ค. 2018

ระบบพิกัด (Coordinate system) (สรุป)

Туре	vertical line	horizontal line
	(X-Axis)	(Y-Axis)
Geographic Coordinate System	Longitude	Latitude
(ระบบพิกัดภูมิศาสตร์) :	(East-West)	(Notrh-South)
WGS 84 (Authority ID : EPSG 4326)	-180 To +180	-90 To + 90
Should be collected in Decimal Degrees form	เส้นแวง	เส้นรุ้ง
with 5 decimal places	Prime meridian (lon=0)	Equator(lat=0)
Universal Transverse Mercator (UTM)	Х	Y
(ระบบพิกัดยูทีเอ็ม) :	Usually 6 digits (can be followed by	For Thailand Usually 7 digits
WGS 84 / UTM Zone 47N or 48 N (Authority ID	Numbers after decimal point.)	(can be followed by Numbers
: EPSG 32647 or EPSG 32648)		after decimal point.)

 \checkmark In one GIS project or database, all layers should have the same coordinate system

 ✓มาตรฐาน European Petroleum Survey Group (EPSG) ปัจจุบันชื่อว่าThe OGP Surveying and Positioning Committee มาตรฐานนี้เป็นที่ยอมรับมาตรฐานานาชาติ ISO และมาตรฐานวิชาชีพ OGC

1.3 GIS Data Type (ชนิดข้อมูล)

1.4 ETC

1.4.1 Pre-Requirements

- Shapefile: of any areas that you want to Display or choropleth
- Data: Data in table format, of the areas of interest
- Gis Software: Should be installed beforehand

Shapefile:

- A shape file stores nontopological geometry and attribute information for the spatial features in a data set
- A shapefile describe geometries, it's a collection of points, lines, polylines and polygons
- 1 shape file consists at least 3 files
 - .shp => coordinate ref.
 - .dbf => attribute table
 - .shx =>join between .shp and .dbf
- M48.SBN
 M48.SBX
 M48.SHP
 M48.SHX

- 1.4.2 Other file types used with GIS.
 - CSV: comma-separated values
 - XLS,XLSX : Microsoft Office Excel
 - KML: Keyhole Markup Language
 - KMZ: KML-Zipped
- 1.4.3 ระบบรหัสอักขระ (character encoding) ที่ใช้กับภาษาไทย
 - UTF-8 เป็นรหัสภาษานานาชาติ หรือ Unicode และภาษาไทยก็บรรจุเป็นส่วนนึงของ Unicode ด้วยเช่นกัน
 - TIS-620 เป็นรหัสภาษาไทยที่กำหนดโดย สมอ. -> สมาคม มาตรฐาน อุตสาหกรรม ไทย (Thai Industrial Standard)
 - WINDOWS-874 เป็นรหัสภาษาไทยที่ไมโครซอฟท์กำหนดขึ้นมา
- 1.4.4 Sources of GIS data
 - Administrative Boundaries and infrastructure
 - DIVA-GIS Country Data : http://www.diva-gis.org/
 - GADM : http://gadm.org/
 - Natural Earth : http://www.naturalearthdata.com/
 - FAO : http ://www.fao.org/geonetwork/srv/en/main.home
 - Elevation
 - GDEM : http://asterweb.jpl.nasa.gov/gdem.asp
 - SRTM : http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
 - Population
 - WorldPop : http://www.worldpop.org.uk/
 - Land cover and vegetation indices
 - USGS : http://landcover.usgs.gov/landcoverdata.php
 - Global Animal Disease Information System
 - FAO EMPRES-i : http://empres-i.fao.org/eipws3g/#h=0

ระบบภูมิศาสตร์สารสนเทศเขตเศรษฐกิจเพื่อการลงทุนด้านปศุสัตว์

- O (http://geodld.dld.go.th/)
- เป็นระบบที่จัดเก็บข้อมูลพื้นฐาน และโครงการต่าง ๆ
 ด้านปศุสัตว์ในรูปแบบ GIS
- o เข้า URL และ Log in โดยใช้ Internet Explorer จะ สามารถใช้งานได้ดีกว่า
- o เข้าไปยังส่วน หน้าหลัก > การนำเสนอข้อมูล > เชิง ภูมิศาสตร์ (แผนที่)
- ด กดปุ่มค้นหา > กำหนดประเภทข้อมูลและพื้นที่ที่
 ต้องการ>กดปุ่มส่งออกไฟล์

2. Global Navigation Satellite System : (GNSS) Global Positioning System (GPS)

- "GPS" Stands for "Global Positioning System"
- GPS is a satellite-based navigation system used to determine the ground position of an object
- made up of at least 24 satellites
- The official USDOD(The U.S. Department of Defense) name for GPS is NAVSTAR
- GPS works in any weather conditions, anywhere in the world, 24 hours a day, with no subscription fees
- GPS Nominal Constellation 24 Satellites in 6 Orbital Planes 4 Satellites in each Plane

Peter H Dana 9/22/98

- There are other similar systems to GPS in the 20,200 km Altitudes, 55 Degree Inclination world, which are all classified as the Global Navigation Satellite System (GNSS)
 - GLONASS is a satellite constellation system built by Russia
- Galileo : The European Space Agency
- ≽ BeiDou : China
- 3. การค้นหาและเก็บค่าพิกัดของตำแหน่ง (03)

Veterinary Services' Data Collection Standards

- GPS Reciever
- All positional data is obtained in a standard format
 - \blacktriangleright Avoids the need for conversion
- Especially important during an animal disease emergency

Map datum : WGS 84 Format : Decimal degrees to 5 decimal places Ex. Lat 38.968903 Lon -76.924766 Number of satellites : Four or more Accuracy : At least 8 meters Units : Meters

Coordinate Observations

Three Levels of Data Collection

- 1) Front Gate location of premises
- 2) Animal population on a premises
 - Confined

 - Poultry or swine Feed mill
 - \blacktriangleright Sheep or horse entrance to the pen or pasture
 - Multiple entrances : closet to front gate
 - Free-ranging
 - Daytime : estimated home range based on landscape factors
 - ightarrow Nightime : if not on range . Pens or corral where held at night
- 3) Exposure sites

Coordinate Collection Free Application

- 4. Using google map and Other applications for GIS (04) Other Simple map management
 - Power BI Desktop https://powerbi.microsoft.com/en-us/desktop/
 - Power BI Desktop คือโปรแกรมที่ใช้ช่วย วิเคราะห์ สรุปผลข้อมูลจำนวนไม่จำกัด จากหลายๆ แหล่งข้อมูล ไม่ ว่าจะเป็น Excel File, Microsoft Access Database, SQL Server, Oracle เป็นต้น
 - พร้อมสามารถแสดงผลได้ทั้งรูปแบบ ตาราง สรุปผลด้วย
 Visualization กราฟในรูปแบบต่างๆ และยังติดตั้ง
 เพิ่มเติมได้จาก Marketplace และแสดงผลแบบเป็นแผน ที่ได้อีกด้วย
 - โดยสามารถแสดงผลผ่านเว็บไซต์ และอุปกรณ์ Mobile
 และ Tablet

เปรียบเทียบการใช้โปรแกรม

หัวข้อ	QGIS		
สามารถแสดงจุดพิกัดได้	ดี	ดี	ดี
สามารถแสดงเป็นChoropleth Map ได้ แสดงความแตกต่าง ของข้อมูลด้วยสี	ดี	ไม่ได้	ได้ ง่ายแต่ ยึดหยุ่นน้อย
การแสดงผลขนาดจุดตาม จำนวน	ได้	ไม่ได้	ได้
สามารถสร้าง buffer รอบจุดที่ ต้องการได้	ឲ	สร้างโดยใช้ เว็บอื่นช่วย	ไม่ได้
ความยืดหยุ่น	มาก	น้อย	น้อย
ระยะเวลาในการสร้างชิ้นงาน	ซ้า	เร็ว	เร็ว
การแสดงชื่อหมู่บ้านบนแผนที่ จริง	ได้ตามข้อมูล ที่มี	ไม่น่าจะได้	ไม่น่าจะได้
การแชร์ข้อมูล บุคคลอื่น อุปกรณ์อื่น	ต้องแชร์เป็น รูป	แชร์ได้ดี	ได้แต่เสียเงิน

Limitation for Google map

Google My Maps' data formats and limits allow you to create rich, multi-layered maps for both personal and business use

Map layers	10 per map
Features (points, lines, shapes)	10,000 per map 2,000 per layer
Attributes (values in info windows)	50 per feature
Import file types	CSV, TSV, KML, KMZ, GPX, or XLSX files, or spreadsheets from Google Drive
File import limit	5MB for KML/KMZ unzipped content 2,000 rows/points, up to 40 MB for other file types
Printed maps New!	High resolution (4x screen resolution)

Importing data to google maps Edit and share

- Go to https://maps.google.com/
- Sign in with your Google Account
- Go to Menu>My Maps>CREATE MAP
- Left click on Import
- Select data file from your computer or from Google drive and also can Drag and Drop your file to the box (Major file type are CSV,XLSX,KML or GPX) (Limit :NOT more than 50 Column)
- You can Creating New layer , New marker , Draw line and Shape

• Map Sharing

Create Buffer With Web Application (https://www.freemaptools.com)

- Go to URL ttps://www.freemaptools.com/radius-around-point.htm
- Can set a point to create a buffer on the map immediately. And customizable
- you can create a Buffer by inserting the data in the CSV Upload section by inserting 1 row per 1 point in the form as follows: [latitude,longitude,radius(km),label(1 text character / optional)] and Press Upload button
- Export .KML file From Buffer created by select Generate KML > Download KML File Here
- Upload a .KML file to the desired layer on the Google Map.

Other Simple map management

- Simple map management website Go to http://map.dsi.go.th/
- Create Map with Microsoft office Excel 2016 +

5. Basic Using of QGIS : aggregate/individual-level data (05 06 07)

Coordinate Reference System (CRS) Setting and Addition of Vector Data Layer

- Set Project Properties to Proper Coordinate Reference System (CRS).For Thailand Usually set to :
 - ➢ Geographic Coordinate System : WGS 84 (Authority ID : EPSG 4326)
 - \blacktriangleright Projected Coordinate System > Universal Transverse Mercator (UTM): WGS 84 / UTM Zone 47N or 48 N (Authority ID : EPSG 32647 or EPSG 32648)
- Add Vector layer > Select Encoding > Browse Data Source

Basic Using of QGIS

- QGIS Website : https://www.ggis.org
- แถบเครื่องมือและปุ่มที่สำคัญ

Refres

3.Brows

1.Add Vector

Spatial distribution of aggregate-level data

การเตรียมข้อมูลภายนอกเพื่อเชื่อมโยงกับแผนที่

- การเชื่อมข้อมูลภายนอกกับฐานข้อมูลของ แผนที่ ตารางข้อมูลภายนอกจะต้องมีค่าใน ฟิลด์ที่จะเชื่อมกันเป็นค่าเดียวกันกับ Attribute table (ต้องเหมือนกันทั้งค่าและ Data Type)
- สำหรับไฟล์ Excel สามารถนำมาใช้ได้
 โดยตรง โดยสามารถกำหนดคุณสมบัติของ
 แต่ละฟิลด์ได้โดยการใช้ Data>Text to
 Columns

 ในกรณีไม่สามารถใช้ Excel file สามารถแปลงเป็น .CSV (Comma Delimited) file และกำหนดคุณสมบัติ ของแต่ละฟิลด์ได้โดยการใช้ file นามสกุล . CSVT

การนำเข้าฐานข้อมูลภายนอกและการเชื่อมกับฐานข้อมูลของแผนที่

- นำเข้าฐานข้อมูลภายนอกโดยเลือก Add vector layer และ Browse ไปยังฐานข้อมูลภายนอกที่ต้องการ ไฟล์จะขึ้นเป็น Layer ใหม่ใน Layers panel โดยสามารถนำเข้าได้ทั้งรูปแบบไฟล์ .csv และรูปแบบไฟล์ Excel ซึ่งในกรณีนี้สามารถกำหนดรูปแบบไฟล์จาก ในไฟล์ Excel ได้เลย
- R Click ไปที่ Layer ของแผนที่และ L Click ไปที่ Properties และเลือก แท็บ Joins
- กดเครื่องหมาย + ด้านล่าง และเลือกดังนี้

- ปรับแต่งสี รูปแบบการแสดงของแผนที่
- แสดงแผนภูมิบนแผนที่
- แสดงฉลาก (Label) และแก้ไข (EasyCustomLabeling Plug-in)
- จัดทำภาพเพื่อนำเสนอ Print Composer
- สร้าง Overview map หรือ minimap

0.0000-3.2000 3.2000-6.4000 6.4000-9.6000 9.6000-12.8000 12.8000-16.000

Create a layer form GPS coordinates โดยใช้ไฟล์ Excel

- Layer Menu > Add Layer > Add Vector layer > Select Encoding > Browse to Add ExerciseData\standardfarm.xlsx
- Processing > Toolbox > QGIS geoalgorhythms
 >Points layer from table > standardfarm.xlsx
- Set Input Layer : Standardfarm , X field : Longitude , Y field : Latitude ,Target CRS : EPSG 4326 then Run
- Export Layer for Change Coordinate reference system of Shape file
- Count Point in Polygon
- Create Buffer
- Spatial query (select features by spatial)
- Clip a vector
- Creating a new vector data
- Link Google Maps with QGIS (OpenLayers Plugin: ต้องsetting ให้แสดง Experimental plugin)
- Export a shapefile to Google Map , Google Earth

